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1. Introduction

This paper is a methodological contribution to the empirical investigation of decision making

under risk and under uncertainty. While the expected utility (EU) model is the most widely

used model for decision making in these contexts, there is a large literature developing

models that aim to give a better account of observed choice behavior. An empirical literature

that tests the EU and other models on experimental data has also emerged alongside these

theoretical developments. These experiments often employ elicitation procedures in which

subjects are in effect making repeated choices between two risky or uncertain outcomes; the

data obtained in this way consist of a finite number of binary choices, which can then be used

to partially recover a subject’s preference. A more recent strand of experiments employs a

different elicitation procedure, which we shall call the budgetary choice procedure. In these

experiments, subjects are asked to choose a preferred option from a potentially infinite set

of alternatives. For example, a subject could be presented with a portfolio problem where

she has to allocate her budget between two assets with state-contingent payoffs. An early

experiment of this kind, the data from which we analyze in this paper, is found in Choi et

al. (2007);1 other examples include Loomes (1991), Gneezy and Potters (1997), Bayer et al.

(2013), Ahn et al. (2014), Choi et al. (2014), Hey and Pace (2014), Cappelen et al. (2015),

and Halevy, Persitz, and Zrill (2018).

For reasons which we explain in Section 1.1, the nonparametric evaluation of data col-

lected through a budgetary choice procedure requires a new methodological approach. The

contribution of this paper is twofold: (1) we develop a new empirical method that could be

used to analyze data (be it experimental or field data) collected from portfolio decisions,

and (2) we apply this new method to evaluate the performance of different models of choice

under risk using data from a number of recent portfolio choice experiments. Our method

allows us to determine whether a data set is consistent with the EU model or some of its

generalizations, without making parametric assumptions on the Bernoulli function (such as

constant relative risk aversion) or on other features of the model. This is empirically impor-

tant because if we happen to find that a data set is incompatible with a given model, then we

can safely conclude that this incompatibility is attributable to the model itself rather than

1 See this paper also for an account of the advantages of a budgetary choice approach.
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a poorly selected parametric form. Since the test also yields a utility function (or functions)

that best fits the data, these can be used to make out-of-sample predictions.

Our method can also be applied to test models of intertemporal choice (such as discounted

utility) and other models which are formally similar to the EU model and its generalizations.

Budgetary choice procedures are increasingly used in experiments to study intertemporal

consumption (see, for example, Andreoni and Sprenger (2012) and Imai and Camerer (2016)).

1.1 Testing EU and other models on a finite lattice

A feature of the budgetary choice procedure is that instead of requiring a subject to choose

one alternative or another, it allows her to calibrate a response and to choose something ‘in

between’. But this feature is also the crucial reason why the nonparametric analysis of data

collected from this procedure requires a new empirical method, whereas no such method is

necessary for binary choices. Indeed, suppose that we make a finite number of observations,

where at observation t a subject chooses a lottery that gives a monetary payoff xts in state

s over one that gives yts in state s (for s “ 1, 2, . . . , s̄), and where the probability of state s

is known to be πs ą 0. Imagine that we would like to test if this data set is consistent with

the EU model. Checking for exact consistency with the EU model simply involves finding a

strictly increasing Bernoulli function u : R` Ñ R` such that
řs̄

s“1 πsupx
t
sq ě

řs̄
s“1 πsupy

t
sq

holds at every observation t. This amounts to solving a finite set of linear inequalities,2 and

it is computationally straightforward to ascertain if a solution exists. However, it is clear

that this method will no longer work when the subject is choosing from classical budget

sets, since even a single observed choice from a budget set reveals an infinite set of binary

preferences between the chosen bundle and alternatives in the budget.

We now give a short and intuitive explanation of how our new method works. Consider

a data set with three observations and two states, as depicted in Figure 1a; the horizontal

axis corresponds to consumption in state 1, and the vertical axis to consumption in state

2. The subject chooses the contingent consumption bundle x1 “ p2, 4q from budget set

B1, x2 “ p6, 1q from B2, and x3 “ p4, 3q from B3, where B1, B2, and B3 are classical

linear budget sets.3 Assume that the probability of state s is commonly known to be πs.

2 The unknowns to be solved are tuprq : r “ xts or yts for some t and su.
3 Note that B1 consists of the budget line and all the bundles below the line.
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(a) Data set with three observations (b) Data set with lattice inserted

Figure 1: The lattice method

This data set is said to be consistent with (or rationalizable by) the EU model if there is a

strictly increasing Bernoulli function u such that π1up2q`π2up4q ě π1upx1q`π2upx2q for all

x “ px1, x2q in B1, and similarly at the other two observations.

We show (in Theorem 1, Section 2) that this data set can be rationalized by the EU model

if it can be rationalized on an appropriately modified consumption set. Specifically, let X

be the set of consumption levels that are observed to have been chosen at some observation

and in some state, plus zero; in this example X “ t0, 1, 2, 3, 4, 6u. Then for the data set to

be EU-rationalizable, it is sufficient (and obviously necessary) for it to be EU-rationalizable

on the finite set X 2, i.e., there is a strictly increasing function ū : X Ñ R` such that the

expected utility of x1 “ p2, 4q is greater than any other bundle in B1 X X 2, and so forth.4

We refer to X 2 as the lattice generated by O; it is depicted by the open circles in Figure 1b.5

Therefore, checking if a data set is EU-rationalizable involves checking if there is a solution

to a finite set of linear inequalities, a problem which is computationally feasible.

The lattice method can also be used to check for consistency with other models of choice

under risk (such as the rank dependent utility (RDU) model (Quiggin, 1982) and the dis-

4 For example, since p1, 6q P B1 XX 2, ū must satisfy π1ūp2q ` π2ūp4q ą π1ūp1q ` π2ūp6q. The full set of

inequalities ū must satisfy is displayed in Table 1 in Section 2.2.
5 We call X 2 a lattice because that is what it looks like in Figure 1b. It is also a lattice in the formal

mathematical sense, but our results do not use lattice theory in any way.
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appointment aversion (DA) model (Gul, 1991)) and under uncertainty (such as the maxmin

expected utility model (Gilboa and Schmeidler, 1989)). The basic test we just described

requires the Bernoulli function to be strictly increasing and continuous, but not necessarily

concave, so a risk loving EU-maximizer would pass the test, which is as it should be if model

consistency is the principal concern. But perhaps a researcher is (also) interested in whether

the subject behaves as a risk averse EU-maximizer, or more generally whether the subject

is consistent with the EU, DA, or RDU models with a concave Bernoulli function; these

hypotheses could be tested as well. In all of these tests, the basic idea is to identify a finite

number of consumption bundles within each constraint set such that the superiority (ac-

cording to some utility function drawn from the model under consideration) of the observed

choice over this finite set is sufficient to guarantee its superiority over all alternatives in the

constraint set. Lastly, note that while the constraint sets in Figure 1 are depicted as linear

budget sets, this restriction is not crucial to our method.

1.2 Empirical implementation and findings

We implement our empirical method on three data sets obtained from the well known

portfolio choice experiments in Choi et al. (2007), Choi et al. (2014), and Halevy, Persitz,

and Zrill (2018). In doing so, we are able to demonstrate the versatility and practicality of

the lattice method, and also to reveal certain empirical features common to all three data

sets. In the Choi et al. (2007) experiment, each subject was asked to purchase Arrow-

Debreu securities under different budget constraints. There were two states of the world,

and it was commonly known that states occurred either symmetrically (each with probability

1/2) or asymmetrically (one with probability 1/3 and the other with probability 2/3); the

experimental designs in Choi et al. (2014) and Halevy, Persitz, and Zrill (2018) closely

resemble the symmetric design in Choi et al. (2007).

We use the lattice method developed in this paper to test the model performance of the

EU, DA, and RDU models. We also check whether a subject’s observations are consistent

with the maximization of some locally nonsatiated utility function on the contingent con-

sumption space. This is the most permissive utility model possible and forms the backdrop to

our empirical analysis; Afriat’s (1967) Theorem tells us that compatibility with utility max-
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imization can be assessed by testing the generalized axiom of revealed preference (GARP).6

The GARP test could be strengthened to test for consistency with the maximization of a

utility function that is stochastically monotone, in the sense that if a bundle dominates an-

other with respect to first order stochastic dominance, then it must have higher utility; a test

for stochastically monotone utility maximization has recently been developed by Nishimura,

Ok, and Quah (2017), and we implement it in this paper for the first time. The EU, DA, and

RDU models are all special cases of stochastically monotone utility maximization, which is

in turn more stringent than locally nonsatiated utility maximization.

In a rich budgetary choice environment with many observations on behavior, a data

set would typically not pass GARP (let alone more stringent requirements) exactly. It is,

however, possible to quantify a data set’s departure from rationalizability by a given model

using the critical cost efficiency index (Afriat, 1973); this index is widely used in the empirical

revealed preference literature, including in Choi et al. (2007) and Choi et al. (2014), while

Halevy, Persitz, and Zrill (2018) implements a variant of this index first proposed by Varian

(1990). The efficiency index runs from 1 to 0, with the index equal to 1 if a data set passes the

test exactly. We adopt this measure of rationality throughout our empirical implementation.7

For each subject in each of the experiments, we are able to calculate the subject’s effi-

ciency indices for the different models under consideration. A negligible number of subjects

pass GARP exactly. In the case of the primarily undergraduate subjects in Choi et al.

(2007) and Halevy, Persitz, and Zrill (2018), more than 80% would pass GARP if we set a

threshold of 0.9 for the efficiency index. In the case of the large scale (representative sample)

experiment in Choi et al. (2014), the efficiency indices for GARP are distinctly lower, with

almost 60% passing GARP at the 0.9 efficiency threshold. The following highlights some

salient features of the data collected from the three experiments.

• A significant minority of subjects either violate GARP and/or stochastic monotonicity;

the decisions of these subjects cannot be explained by the EU, DA, or RDU models

since all of them respect first order stochastic dominance.
6 This term and its acronym were coined by Varian (1982), who also provided a proof of Afriat’s Theorem.
7 We also carry out some analysis with Varian’s version of the index which is reported in the Online

Appendix. The calculation of Varian’s index is more computationally demanding than calculating Afriat’s,

so our analysis with that index does not cover all of the models under consideration.
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• Around half of the subjects who pass GARP (at some reasonable efficiency threshold)

would also be compatible with the EU model; for these subjects, the EU model seems a

good model of behavior, provided that some allowance is made for optimization errors.

• We find no evidence that the DA model accounts for the behavior of a significant

proportion of subjects not accounted for by the EU model.

• On the other hand, there is some evidence that the RDU model could explain a signif-

icant part of the population not behaving as EU-maximizers.

Since our testing procedure also produces, for each subject, a rationalizing utility function

belonging to a given model, that recovered utility function could then be used to make out-of-

equilibrium predictions. We carry out a simple exercise of this type, using a rank dependent

utility function estimated from a subject’s portfolio decisions, to make predictions on the

subject’s choice when she is independently presented with a choice between two lotteries.

Our objective here is to not check how often the procedure makes correct predictions, since

the data we have access to do not allow us to explore that question in a meaningful way, but

simply to illustrate the potential usefulness of our nonparametric methods for this purpose.

1.3 Relationship with the revealed preference literature

Our paper is related to the revealed preference literature originating from Afriat’s (1967)

Theorem, which characterizes price and demand observations that are consistent with the

maximization of a locally nonsatiated utility function (see also Diewert (1973) and Varian

(1982)). A natural follow up to Afriat’s contribution is to characterize those data sets

which are rationalizable by more specialized utility functions. Among these papers are those

which characterize state price and contingent consumption demand observations that are

consistent with the EU model8 and (in more recent papers) some of its generalizations;

these include Varian (1983a, 1983b, 1988), Green and Srivastava (1986), Diewert (2012),

Bayer et al. (2013), Echenique and Saito (2015), Chambers, Liu, and Martinez (2016), and

8 The EU model requires the utility function on the contingent consumption space to be additively

separable. There are results which characterize data sets that are rationalizable by a weakly separable utility

function (see Varian (1983a) and Quah (2014)).
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Chambers, Echenique, and Saito (2016).9 The principal difference between our results and

this literature is that we do not rely on the sufficiency of first order conditions. This has

two important implications: (i) the models we consider need not induce a convex preference

over the contingent consumption space (e.g., we allow for risk loving behavior under EU or

elation seeking behavior under DA/RDU), and (ii) we can weaken the requirement that the

constraint set is a linear budget set. For reasons which we give in Section 3, allowing for

nonlinear constraint sets enables our method to be used to calculate Afriat’s efficiency index.

1.4 Organization of the paper

Section 2 describes how the lattice method can be used to test the EU, DA, and RDU

models. Further applications of the lattice method to test models of decision making under

uncertainty or over time, can be found in the Online Appendix. In Section 3 we explain the

Afriat and Varian efficiency indices and how the lattice method is useful in their computation.

Section 4 extends the lattice method to require the concavity of the Bernoulli function. The

empirical implementation is found in Section 5. The Online Appendix contains further

discussion of theoretical results and empirical findings.

2. The lattice method

We assume that there is a finite set of states, denoted by S “ t1, 2, . . . , s̄u. The contingent

consumption space is Rs̄
`; for a typical consumption bundle x P Rs̄

`, the sth entry, xs, specifies

the consumption level in state s.10 There is a finite data set

O “ tpxt, Bt
qu

T
t“1

consisting of T observations, where xt P Bt and Bt Ă Rs̄
`. We could interpret this as data

collected from an experiment where the subject chooses the bundle xt from the constraint

9 There is also a closely related literature on recovering expected utility from asset or contingent con-

sumption demand functions, where, in effect the data set is assumed to be infinite (see, for example, Dybvig

and Polemarchakis (1981) and Kubler, Selden, and Wei (2014)).
10 Our results do depend on the realization in each state being one-dimensional (which can be interpreted

as a monetary payoff, but not a bundle of goods). This case is the one most often considered in applications

and experiments and is also the assumption in a number of recent papers, including Kubler, Selden, and

Wei (2014), Echenique and Saito (2015), and Chambers, Echenique, and Saito (2016). The papers by Varian

(1983a, 1983b), Green and Srivastava (1986), Bayer et al. (2013), and Chambers, Liu, and Martinez (2016)

allow for multi-dimensional realizations. However, and crucially, in all of these papers, convexity of the

agent’s preference over contingent consumption and linear budget sets are also required.
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set Bt at observation t and this will indeed be our interpretation throughout the paper.11

We assume that Bt is a compact set.

We denote the upper boundary of Bt by BBt; an element x P Bt is said to be in BBt if

there is no x1 P Bt such that x1 ą x.12 The downward extension of Bt is the set

Bt
“ ty P Rs̄

` : y ď x for some x P Btu.

Obviously, Bt contains Bt. The most important example of a constraint set is the classical

or linear budget set. At price vector p P Rs̄
`` and wealth w ą 0, the classical budget

set is Bpp, wq “ tx P Rs̄
` : p ¨ x ď wu. By a classical data set, which we denote by

O “ tpxt,ptquTt“1, we mean a data set where, at observation t, the subject chooses xt from

Bt
“ Bpp,pt

¨ xt
q “ tx P Rs̄

` : p ¨ x ď pt
¨ xt
u. (1)

Thus O can also be written as tpxt,Bppt,pt ¨ xtqquTt“1. Note that the upper boundary of

Bppt,pt ¨ xtq is simply the budget plane, i.e., BBppt,pt ¨ xtq “ tx P Rs̄
` : pt ¨ x “ pt ¨ xtu,

while the downward extension of Bppt,pt ¨xtq is itself. The experiments conducted by Choi

et al. (2007), Choi et al. (2014), and Halevy, Persitz, and Zrill (2018), the data from which

we analyze in Section 5, involve subjects choosing from classical budget sets with two states.

Bear in mind, however, that our formulation only requires Bt to be compact; in particular,

it does not have to be a linear budget set. For example, a nonlinear budget set occurs when

a subject chooses contingent consumption through a portfolio of securities in an incomplete

market (i.e., loosely speaking, when the number of securities is fewer than the number of

states); in this case, the budget set will not be linear, but it will be compact so long as the

security prices do not admit arbitrage.13 In this paper, the crucial application requiring Bt

to be nonlinear is in quantifying approximate rationalizability when a data set O cannot be

exactly rationalized; as we explain in Section 3, this requires testing the rationalizability of

11 Obviously nothing in principle forecloses the possibility of applying our method to observational bud-

getary choice data of the type found in insurance or financial decision problems.
12 For the vectors x, y P Rs̄, we write x ě y if xs ě ys for all s, and x ą y if x ě y and x ‰ y; if xs ą ys

for all s, we write x " y.
13 Indeed, there is pt " 0 such that Bt “ tx P Rs̄

` : pt ¨ x ď pt ¨ xtu X tZ ` ωu, where Z is the span of

assets available to the agent and ω is the agent’s endowment of contingent consumption. Both Bt and xt

will be known to the observer, if he knows the asset prices, the agent’s holding of securities, the asset payoffs

in every state, and the agent’s endowment of contingent consumption ω.
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a modified data set that has nonlinear constraint sets, even if the true constraint sets are

linear budget sets.

Before presenting the formal results, we provide an informal explanation of the general

approach we adopt in ascertaining whether a data set O is compatible with a given model

of decision making under risk or uncertainty. We first notice that most models of decision

making under risk and under uncertainty have two essential components: a Bernoulli func-

tion u : R` Ñ R` and an aggregator function φ : Rs̄
` Ñ R, so that the utility of a bundle

x is φpupx1q, . . . , upxs̄qq. For a given aggregator φ, the first step is to test whether there

exists a Bernoulli function u, which rationalizes the data, i.e., which guarantees that, at

each observation t, the utility of the chosen bundle xt is weakly greater than the utility of

any other bundle x P Bt. Theorem 1 (in Section 2.1) provides that test. However, a model

of decision making under risk or uncertainty may correspond to a family of aggregators φ. If

so, there is a second step that involves testing whether there is an aggregator in the family

of aggregators under consideration and a Bernoulli function u that together rationalize the

data. We now turn to the formal exposition.

Let tφp¨, tquTt“1 be a collection of functions, where φp¨, tq : Rs̄
` Ñ R is continuous and

strictly increasing.14 The data set O “ tpxt, BtquTt“1 is said to be rationalizable by tφp¨, tquTt“1

if there exists a continuous and strictly increasing function u : R` Ñ R`, which we shall

refer to as the Bernoulli function, such that

φpupxt
q, tq ě φpupxq, tq for all x P Bt, (2)

where upxq “ pupx1q, upx2q, . . . , upxs̄qq. In other words, the observed choice behavior is

consistent with the hypothesis that, at observation t, the subject has chosen a bundle from

Bt that maximizes the utility function φpup¨q, tq : Rs̄
` Ñ R.15

The function φp¨, tq aggregates the vector of ‘utils’ upxq into a single number. Of course,

the most familiar formula for φp¨, tq arises in the expected utility (EU) model; in this case, if

the probability of state s at observation t is objectively known to be πt
s ą 0,

φpu1, u2, . . . , us̄, tq “
s̄
ÿ

s“1

πt
sus. (3)

14 By strictly increasing, we mean that φpz, tq ą φpz1, tq if z ą z1.
15 In keeping with the more empirically oriented parts of the revealed preference literature, this definition

allows for the possibility that there are other bundles x in Bt that maximize φpup¨q, tq.
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Other models will lead to different formulations of φ (as we explain in greater detail in

Section 2.4). Note that the objective probabilities need not vary across observations; in that

case, φ would be independent of t.

Two requirements are imposed on the Bernoulli function u. Continuity is an important

technical condition because it guarantees that φpup¨q, tq is continuous, which in turn guar-

antees that the agent’s utility maximization problem always has a well behaved solution on

compact constraint sets.16 The other requirement on u is that it is strictly increasing. Notice

that some assumption of this type is necessary: in particular, if we allow u to be a constant

function then every data set O is rationalizable because the subject would be indifferent

across all bundles in Rs̄
`. Requiring u to be strictly increasing is reasonable since its argu-

ment is typically interpreted as money. This assumption, together with the assumption that

φp¨, tq is a strictly increasing function guarantees that

φpupxt
q, tq ą φpupxq, tq for all x P Bt

zBBt.17 (4)

In other words, a bundle that is not on the boundary of the constraint set has strictly lower

utility than the chosen bundle xt.

Note that we do not require u to be concave. There are two reasons for this. First, it is

desirable to have a test with a minimum of auxiliary assumptions, so that any rejection of the

model would be decisive and could not attributed to the effect of the ancillary assumption.

This is relevant because we know that concavity of u in the EU model imposes observable

restrictions on portfolio choices over and above those implied by the EU model (see Section

A4 of the Online Appendix).18 Second, while the concavity of u is an oft-imposed assumption

because it facilitates theoretical and empirical analysis, it is not a fundamental part of EU

theory or many of its later generalizations. Indeed, departures from concavity have even been

exploited to explain certain empirical phenomena; an early paper of that type is Friedman

and Savage (1948). In prospect theory, the nonconcavity of the Bernoulli function around

16 To be precise it guarantees that the optimal solutions form a nonempty compact set and is (in the case

of demand) an upper hemicontinuous correspondence of prices.
17 Indeed, if x P Bt

zBBt, then there is y P Bt such that y ě x and by the optimality of xt, φpupxtq, tq ě

φpupyq, tq. If y “ x then y P BtzBBt, so φpupxtq, tq ą φpupyq, tq “ φpupxq, tq. Otherwise, y ą x and by the

strict increasing property, φpupxtq, tq ě φpupyq, tq ą φpupxq, tq.
18 This situation is unlike that in Afriat’s Theorem, where it is known that concavity has no additional

observable restrictions.
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a reference point also plays a crucial role.19 So there is advantage in having a test that is

agnostic about the curvature of u.

2.1 The Main Result

Let Y be any subset of R`. Given a Bernoulli function u : R` Ñ R`, the function

ū : Y Ñ R` is the restriction of u to Y , if the functions agree on Y , i.e., ūprq “ uprq for all

r P Y . In the other direction, a Bernoulli function u : R` Ñ R` is said to extend a function

ū : Y Ñ R` if the two functions agree on Y .

Given a data set O “ tpxt, BtquTt“1, we define

X ˚ “ t0u Y tx1 P R` : x1 “ xts for some t, su; (5)

besides zero, X ˚ contains those levels of consumption that are chosen at some observation

and in some state. Since the data set is finite, so is X ˚. Let X be a finite subset of

R` containing X ˚. We define L “ X s̄ and shall refer to L as the lattice associated with O,

because L has this appearance when s̄ “ 2 (see Figure 1b).20 Suppose that O “ tpxt, BtquTt“1

is rationalizable by tφp¨, tquTt“1 with the Bernoulli function u : R` Ñ R`. If ū : X Ñ R` is

the restriction of u to X , then

φpūpxt
q, tq ě φpūpxq, tq for all x P Bt

X L (6)

(where ūpxq “ pūpx1q, ūpx2q, . . . , ūpxs̄qq) and

φpūpxt
q, tq ą φpūpxq, tq for all x P

`

Bt
zBBt

˘

X L. (7)

This follows immediately from (2) and (4) since uprq “ ūprq for all r P X and Bt X L Ă Bt

and
`

Bt
zBBt

˘

X L Ă Bt
zBBt. In other words, if u rationalizes the data set O then it will

continue to rationalize the data set if the consumption space is restricted to the lattice L.

Our main theorem says that the converse of this statement is also true.21

19 An extension to gains/losses around a reference point is presented in Section A3 of the Online Appendix.
20 L is also a lattice in the mathematical sense, but our results do not rely on lattice theory.
21 We cannot replace Bt with Bt in (6) and (7). For example, suppose x1 “ p1, 0q is chosen from

B1 “ tpx1, x2q P R2
` : 2x1 ` x2 “ 2u and x2 “ p0, 1q is chosen from B2 “ tpx1, x2q P R2

` : x1 ` 2x2 “ 2u (so

the constraint sets are straight lines). These observations cannot be rationalized by any increasing utility

function and, in particular, cannot be rationalized in the sense of Theorem 1 (with φ constant across t).

However, since L “ tp0, 0q, p0, 1q, p1, 0q, p1, 1qu, B1 X L “ tp1, 0qu and B2 X L “ tp0, 1qu, conditions (6) and

(7) hold if Bt is replaced with Bt. On the other hand
`

B1
zBB1

˘

X L contains p0, 1q and
`

B2
zBB2

˘

X L
contains p1, 0q, so (7) requires φpūpx1qq ą φpūpx2qq and φpūpx1qq ă φpūpx2qq, which plainly cannot happen.

This allows us to conclude, correctly, that this data set is not rationalizable.
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Theorem 1. Suppose that O “ tpxt, BtquTt“1 is rationalizable by the collection of continuous

and strictly increasing functions tφp¨, tquTt“1 with the Bernoulli function u : R` Ñ R`. Let

X be a finite set in R` that contains X ˚ (as defined by (5)) and let L “ X s̄. Then the

restriction of u to X , ū : X Ñ R`, satisfies conditions (6) and (7).

Conversely, suppose that given O “ tpxt, BtquTt“1 and a collection of continuous and

strictly increasing functions tφp¨, tquTt“1, there is a strictly increasing function ū : X Ñ R`
that satisfies conditions (6) and (7). Then there is a Bernoulli function u : R` Ñ R` that

extends ū and with which O “ tpxt, BtquTt“1 is rationalizable by tφp¨, tquTt“1.

This theorem tells us that testing for the rationalizability of O is equivalent to testing

for rationalizability in the case where the agent’s consumption space is considered to be L

rather than Rs̄
`, which (crucially) reduces the rationality requirements to a finite number of

optimality conditions involving the observed choices and alternatives (see (6) and (7)), and

with the Bernoulli function defined on X rather than R`.

The intuition for Theorem 1 ought to be strong. Given ū satisfying (6) and (7), we

can define the step function û : R` Ñ R` where ûprq “ ū prrsq, with rrs being the largest

element of X weakly lower than r, i.e., rrs “ max tr1 P X : r1 ď ru. Notice that φpûpxtq, tq “

φpūpxtq, tq and, for any x P Bt, φpûpxq, tq “ φpūprxsq, tq, where rxs “ prx1s, rx2s, . . . , rxs̄sq in

Bt
X L. Clearly, if ū obeys (6) and (7) then O is rationalized by tφp¨, tquTt“1 and û (in the

sense that (2) holds). This falls short of the claim in the theorem only because û is neither

continuous nor strictly increasing;22 the proof in the Appendix shows how one could in fact

construct a function with these additional properties.

Note that Theorem 1 gives some leeway on how X is chosen. If we are simply interested

in testing for the rationalizability of O by a given model, then we could pick X “ X ˚, but

sometimes it is advantageous to let X be a strictly larger set (see Section 2.3 on making

out-of-sample predictions). Note also that in checking the conditions (6) and (7) we can

confine ourselves to checking those bundles x1 in Bt
X L which are not dominated by some

other bundle in Bt
X L. This is because if x1 ą x2 and property (6) or (7) holds for x “ x1,

it will also hold for x “ x2 since both φ and ū are strictly increasing.

22 Recall that the Bernoulli function u is continuous and strictly increasing by definition.
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2.2 Testing the expected utility model

Theorem 1 provides us with a convenient way of testing for rationalizability by the EU

model. Consider an experiment where the probability of any state can be (possibly) varied

across observations and where these probabilities are announced, so that both the observer

and the subject know that the probability of state s at observation t is πt
s ą 0. The data

set O “ tpxt, BtquTt“1 is EU-rationalizable if there is a Bernoulli function u : R` Ñ R` such

that
řs̄

s“1 π
t
supx

t
sq ě

řs̄
s“1 π

t
supxsq for all x P Bt. Theorem 1 tell us that O “ tpxt, BtquTt“1 is

EU-rationalizable if and only if there is a strictly increasing function ū : X Ñ R` for which

(6) and (7) hold, with φ given by (3), i.e.,

s̄
ÿ

s“1

πt
sūpx

t
sq ě

s̄
ÿ

s“1

πt
sūpxsq for all x P Bt

X L and (8)

s̄
ÿ

s“1

πt
sūpx

t
sq ą

s̄
ÿ

s“1

πt
sūpxsq for all x P

`

Bt
zBBt

˘

X L. (9)

This is a system of linear inequalities, and solving it is both formally possible (in the sense

that there is an algorithm that can decide within a known number of steps whether or not

it has a solution) and computationally feasible.

As an example of how this works in practice, consider again the data set depicted in

Figure 1 in Section 1. Suppose that it is commonly known that the probability of state s

(s “ 1, 2) at observation t is πt
s. Since the three observed choices are x1 “ p2, 4q, x2 “ p6, 1q

and x3 “ p4, 3q, X ˚ “ t0, 1, 2, 3, 4, 6u. Choosing X “ X ˚, EU-rationalizability can be

tested by checking for a solution to the conditions listed in Table 1. In the top left panel

are the strict inequalities guaranteeing that ū is strictly increasing. The other panels list

the conditions for the optimality of x1 in B1, x2 in B2, and x3 in B3.23 For example, at

observation 1, the observed choice is x1 “ p2, 4q and there are 18 bundles in B1XL (besides

x1), of which only the two bundles p1, 6q and p3, 1q are undominated,24 with the former in

the interior of the budget set and the latter on the upper boundary. The first inequality in

the top right panel is imposed by (9) and the second inequality by (8). Similarly, the reader

can check that there are two undominated bundles in B2 XL and two in B3 XL, leading to

23 Recall that since each Bt is a classical linear budget set, we have Bt
“ Bt for all t.

24 See the remarks at the end of Section 2.1.
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Monotonicity of ū Optimality of x1 “ p2, 4q

ūp6q ą ūp4q ą ūp3q ą ūp2q π1
1ūp2q ` π

1
2ūp4q ą π1

1ūp1q ` π
1
2ūp6q

ūp2q ą ūp1q ą ūp0q π1
1ūp2q ` π

1
2ūp4q ě π1

1ūp3q ` π
1
2ūp1q

Optimality of x2 “ p6, 1q Optimality of x3 “ p4, 3q

π2
1ūp6q ` π

2
2ūp1q ě π2

1ūp0q ` π
2
2ūp3q π3

1ūp4q ` π
3
2ūp3q ą π3

1ūp2q ` π
3
2ūp4q

π2
1ūp6q ` π

2
2ūp1q ě π2

1ūp3q ` π
2
2ūp2q π3

1ūp4q ` π
3
2ūp3q ą π3

1ūp6q ` π
3
2ūp1q

Table 1: Conditions on ū for EU-rationalizability

the inequality conditions displayed in the bottom panels. EU-rationalizability holds if there

is a ū that solves the linear inequalities displayed in Table 1.25

At this point it is worth emphasizing that requiring a data set to be EU-rationalizable is

certainly more stringent than simply requiring it to be rationalizable by a locally nonsatiated

utility function (on the contingent consumption space Rs̄
`). Indeed, while a data set with

a single observation px1,p1q must necessarily be rationalizable in that sense, even a single

observation can be incompatible with the EU model.

Example 1. Suppose that at the price vector p1 “ p1, 2q, the subject chooses the bundle

x1 “ p1, 2q. This subject is buying more of the more expensive good, which is incompatible

with the maximization of expected utility when the two states are equiprobable. It would,

of course, fail the lattice test. Indeed, let X “ X ˚ “ t0, 1, 2u. In Figure 2a, we depict x1

chosen from B1 “ tx P R2
` : x1 ` 2x2 ď 5u, and with the lattice L “ X 2 inserted in Figure

2b. Clearly, p2, 1q P LX pB1zBB1q; comparing x1 “ p1, 2q with p2, 1q, condition (9) requires

0.5ūp1q ` 0.5ūp2q to be strictly greater than itself, which is impossible.26 l ,

Afriat’s Theorem characterizes classical data sets that are rationalizable by locally non-

satiated utility functions. Readers who are familiar with Afriat’s Theorem will notice some

similarity between it and Theorem 1, in the sense that both results involve revealed prefer-

25 If πt
s “ 1{2 for all t, s, the reader can verify that one solution to this problem is ūp0q “ 0, ūp1q “ 1,

ūp2q “ 4, ūp3q “ 6, ūp4q “ 8, and ūp6q “ 9. So the data set depicted by Figure 1 is EU-rationalizable.
26 If the state probabilities are not known to the observer then it is impossible to disprove expected utility

with one observation. Instead the observation in Example 1 would tell us that state 2 is more probable than

state 1. This means that if there is another observation where the subject buys more of state 1 consumption

even if it is more expensive, an observer could conclude that the agent is not maximizing expected utility.

This is the essential idea in Epstein (2000).
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(a) Observation 1 (b) Observation 1 with lattice

Figure 2: The lattice method applied to Example 1

ence relationships (such as (6) and (7), or the EU versions (8) and (9)), between the chosen

bundle xt and a finite subset of the budget set Bt. In the case of Theorem 1 this subset

is Bt
X L whereas in the case of Afriat’s Theorem, the comparison is with Bt

X D, where

D “ txtuTt“1. Enlarging the set of comparisons from D to L is necessitated by the special

structure imposed on the utility function by Theorem 1. This is clear from Example 1,

where the observation is not EU-rationalizable, even though the inequalities (8) and (9) are

trivially satisfied in B1
XD, since D “ tx1u.27

There is a further connection between the two results. In the case of Afriat’s Theorem, the

revealed preference relations can be formulated as a no-cycling condition among the elements

of D called the generalized axiom of revealed preference (GARP). By appealing to a result

of Fishburn (1975), it is possible to characterize EU-rationalizabilty in terms of a condition

that is stronger than GARP but similar to it in the sense that it forbids a generalized notion

of a revealed preference cycle on the set L. These observations are discussed in greater detail

in Section A1 of the Online Appendix.

2.3 Making out-of-sample predictions

Once it has been ascertained that a subject’s behavior is consistent with a given model, it

would be natural to exploit this compatibility by using the same model to make predictions

of that subject’s out-of-sample behavior. We now explain how this can also be done using

Theorem 1. To simplify our discussion, we only explain this in the context of the EU model;

27 For another result which involves comparing xt with a subset of Bt that is larger than Bt X D, see

Quah’s (2014) characterization of data sets which are rationalizable by weakly separable utility functions.

16

                            17 / 49



 

making predictions when some other model is assumed can be carried out in a similar fashion.

The procedure outlined here is implemented in Section 5.2.

Suppose O “ tpxt, BtquTt“1 is collected from a subject who is EU-rationalizable (with

objective probabilities πt
s ą 0 for all t and s). Using the information from O and assuming

that the subject is behaving as an EU-maximizer, how can we predict the subject’s preference

between two lotteries: lottery A, which pays out ai with probability αi ą 0 (for i “ 1, 2,

with α1 ` α2 “ 1), and lottery B which pays out bi with probability βi ą 0 (for i “ 1, 2

with β1 ` β2 “ 1)? In formal terms, a strict preference for A over B is consistent with

the EU model if there is a Bernoulli function u : R` Ñ R` that EU-rationalizes O and

satisfies α1upa1q ` α2upa2q ą β1upb1q ` β2upb2q. Whether or not u exists can be easily

answered using Theorem 1. In this case, it is convenient to choose X to be strictly larger

than X ˚. Specifically, let X “ X ˚ Y ta1, a2, b1, b2u. Since O is EU-rationalizable, there

must be a strictly increasing function ū : X Ñ R` that solves the inequalities (8) and (9).

Furthermore, Theorem 1 tells us that ū has an extension u, with domain R`, that rationalizes

O. Therefore, to ascertain whether a strict preference for A over B is consistent with the

EU model, a necessary and sufficient test is whether there is a strictly increasing function

ū : X Ñ R` that, in addition to (8) and (9), obeys

α1ūpa1q ` α2ūpa2q ą β1ūpb1q ` β2ūpb2q. (10)

This test is easy to implement since (10) is a linear inequality. Note that because there are

potentially multiple Bernoulli functions that EU-rationalize the data, it is entirely possible

that both a preference for A over B and a preference for B over A is consistent with the EU

model: in this case, there will be an increasing function ū that solves (8), (9) and (10), and

another one that solves (8), (9) and (10), the last with the inequality reversed.

2.4 Testing other models using the lattice method

So far, we have considered tests of EU-rationalizability in the case where the probability

of each state is known to both the agent and the observer. Our test could be extended to

the case where no objective probabilities can be attached to each state. A data set O “

tpxt, BtquTt“1 is rationalizable by subjective expected utility (SEU) if there exists probability

distribution π “ pπ1, π2, . . . , πs̄q " 0 and a Bernoulli function u : R` Ñ R` such that, at
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every observation t, we have
řs̄

s“1 πsupx
t
sq ě

řs̄
s“1 πsupxsq for all x P Bt. In this case, φ

is independent of t and is required to belong to the family ΦSEU such that φ P ΦSEU if

φpuq “
řs̄

s“1 πsus for some π " 0. By Theorem 1, O “ tpxt, BtquTt“1 can be rationalized

by some φ P ΦSEU if and only if there is a strictly increasing ū such that (8) and (9) holds

for some π " 0. These conditions form a system of inequalities bilinear in the unknowns

tπsu
s̄
s“1 and tūprqurPX .

For many of the standard models of decision making under risk, under uncertainty, or

over time, the rationalizability problem has a structure similar to that of SEU in the sense

that it involves finding a Bernoulli function u and a function φ belonging to some family Φ

that together rationalize the data, and this problem can in turn be transformed via Theorem

1 into a problem of solving a system of bilinear inequalities. In Section A3 of the Online

Appendix, we use Theorem 1 to devise such tests for various models of contingent choice,

including choice acclimating personal equilibrium (Kőszegi and Rabin, 2007), maxmin ex-

pected utility (Gilboa and Schmeidler, 1989), variational preferences (Maccheroni, Marinacci,

and Rustichini, 2006), and a model with budget dependent reference points. We also explain

how we could test models of choice over time on data from budgetary allocations, such as

those collected by Andreoni and Sprenger (2012). A model of discounted utility (with or

without present bias) is formally very similar to the subjective expected utility model.

Even though solving a bilinear problem may be computationally intensive, the Tarski-

Seidenberg Theorem tells us that this problem is decidable, in the sense that there is a

known algorithm that can determine in a finite number of steps whether or not a solution

exists. Nonlinear tests are not new to the revealed preference literature; for example, they

appear in tests of weak separability (Varian, 1983a), in tests of maxmin expected utility and

other models of ambiguity (Bayer et al., 2013), and in tests of Walrasian general equilibrium

(Brown and Matzkin, 1996). Solving these problems can be computationally straightforward

in some cases because of certain special features of the model/environment or when the num-

ber of observations is small. The tests that we develop simplify dramatically and are easily

implementable in practice when there are only two states (though they remain nonlinear).

The two-state case, while special, is very common in applied theoretical settings and

laboratory experiments. For example, to implement the SEU test, we simply condition on
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the probability of state 1 (and hence on the probability of state 2), and then perform a linear

test to check whether there is a strictly increasing function ū solving (8) and (9). If not, we

choose another probability for state 1, implement, and repeat (if necessary). Even a uniform

grid search of up to two decimal places on the probability of state 1 will lead to no more

than 99 linear tests, which can be implemented with very little difficulty.28

Rank dependent utility (RDU). In Section 5, we report the findings of an empirical

test of the RDU model (Quiggin, 1982) when there are two states, so we explain this case

of the model, and its corresponding test, in detail here. The Online Appendix contains a

treatment of the multi-state case (see Sections A2 and A4).

Consider an experiment where the probability of states 1 and 2 are objectively known

and given by π1 ą 0 and π2 ą 0. With no loss of generality, assume that π1 ě π2. In the

RDU model, the subject behaves as though these probabilities are distorted: if state s is the

less favorable state, i.e., the state where the payout is smaller, then the probability given to

state s is ρs, with this distortion respecting the rank of the objective probabilities, i.e.,

1 ą ρ1 ą ρ2 ą 0 if π1 ą π2 and 1 ą ρ1 “ ρ2 ą 0 if π1 “ π2. (11)

The utility of px1, x2q when x1 ď x2 is V px1, x2q “ ρ1upx1q ` p1 ´ ρ1qupx2q and the utility

of px1, x2q when x1 ą x2 is V px1, x2q “ p1 ´ ρ2qupx1q ` ρ2upx2q. Converting this into the

framework of Theorem 1, we are testing rationalizability in the case where φ has the form:

φpu1, u2q “

$

’

&

’

%

ρ1u1 ` p1´ ρ1qu2 if u1 ď u2

p1´ ρ2qu1 ` ρ2u2 if u1 ą u2

(12)

By Theorem 1, a necessary and sufficient condition for O “ tpxt, BtquTt“1 to be RDU-

rationalizable is for there to be pρ1, ρ2q obeying (11) and a strictly increasing ū such that

with φ defined by (12), the conditions (6) and (7) admits a solution. Given the formula for

φ, this test involves solving a set of inequalities that are bilinear in the unknowns tūprqurPX

and tρ1, ρ2u. When implementing this test, we let ρ1 and ρ2 take different values on a very

fine grid in r0, 1s2, subject to (11), and (for each case) perform the corresponding linear test

28 While we have not found it necessary to use them in our implementation in this paper, there are solvers

available for mixed integer nonlinear programs (for example, as surveyed in Bussieck and Vigerske (2010))

that are potentially useful for implementing bilinear tests more generally.
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Monotonicity of ū Optimality of x1 “ p2, 4q

ūp6q ą ūp4q ą ūp3q ą ūp2q ρ1ūp2q ` p1´ ρ1qūp4q ą ρ1ūp1q ` p1´ ρ1qūp6q

ūp2q ą ūp1q ą ūp0q ρ1ūp2q ` p1´ ρ1qūp4q ě p1´ ρ2qūp3q ` ρ2ūp1q

Optimality of x2 “ p6, 1q Optimality of x3 “ p4, 3q

p1´ ρ2qūp6q ` ρ2ūp1q ě ρ1ūp0q ` p1´ ρ1qūp3q p1´ ρ2qūp4q ` ρ2ūp3q ą ρ1ūp2q ` p1´ ρ1qūp4q

p1´ ρ2qūp6q ` ρ2ūp1q ě p1´ ρ2qūp3q ` ρ2ūp2q p1´ ρ2qūp4q ` ρ2ūp3q ą p1´ ρ2qūp6q ` ρ2ūp1q

Table 2: Conditions on ū for RDU-rationalizability given pρ1, ρ2q

to search for a solution in tūprqurPX ; O is RDU-rationalizable if such a solution exists for

some value of pρ1, ρ2q.

As an illustration, consider again the data set displayed in Figure 1. In Table 2 we collect

the relevant inequalities for rationalizability by φ as defined by (12); the data set can be

rationalized by φ (for specific values of ρ1 and ρ2) if and only if there is ū that satisfies the

inequalities displayed in that table. Comparing this test with the test for EU-rationalizability

(displayed in Table 1 in Section 2.2), notice that there is no change to X or to L, nor is

there a change to the relevant comparisons at each observation (for example at observation

1, p2, 4q is compared against p1, 6q and p3, 1q in both tables). The only difference between

them is in the functional form, with the EU-form in Table 1 and the RDU-form in Table 2.

Disappointment Aversion (DA). We also implement a lattice test of the DA model

(Gul,1991). When there are two states, the DA model is a special case of RDU, with a

further restriction on ρ1 and ρ2. Specifically, there is β P p´1,8q such that, for s “ 1, 2,

ρs “
p1` βqπs
1` πsβ

. (13)

Note that this restriction has bite only if π1 ‰ π2, so the RDU and DA models coincide when

π1 “ π2. If β “ 0, the agent simply maximizes expected utility. If β ą 0, we have ρs ą πs;

the agent attaches a probability to state s that is higher than the objective probability when

state s is the less favorable state and the agent is said to be disappointment averse. If β ă 0,

then ρs ă πs, and the agent is elation seeking. Similar to RDU, we test the DA model by

letting β take on different values and performing the associated linear test.29

29 In practice, we let ρ1 take on different values on p0, 1q, which maps to different values of β and then to

ρ2.
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Figure 3: RDU-rationalizable but not EU-rationalizable data set

While it is well known that the RDU and EU models lead to different predictions, it

not immediately clear that they are observationally distinct in the context of observations

drawn from linear budgets. We end this section with an example of a data set that is

RDU-rationalizable but not EU-rationalizable.

Example 2. Suppose the data set consists of three observations as depicted in Figure 3

where x1 “ pa, aq, x2 “ pb, bq, and x3 “ pc, dq. Note that pb, cq is on the first observation’s

budget line and pa, dq is on the second observation’s budget line. The price at observation

t is pt “ p1, qtq, where q1 ą 1 ą 1{q1 ě q2 ą q3. Consequently the first budget line is the

flattest and the third budget line is the steepest.

We claim that these observations are not EU-rationalizable if the two states are equiprob-

able. Suppose that they are, for some Bernoulli function u. Then the first observation tells

us that 2upaq ě upbq`upcq, since pb, cq is available when pa, aq is chosen. Similarly, from the

second observation, we know that 2upbq ě upaq ` updq. Together this gives

upbq ´ updq ě upaq ´ upbq ě upcq ´ upaq,

from which we obtain upaq ` upbq ě upcq ` updq. But this is contradicted by observation 3

where pc, dq is chosen even though pa, bq is in the interior of the budget set.

However, these observations are RDU-rationalizable. This should be quite intuitive be-
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cause the demand pattern involves stickiness on the 45 degree line over a range of prices,

with the demand deviating away from x1 “ x2 only when (at the third observation) state 2

consumption is sufficiently cheap. Indeed, suppose V px1, x2q “ ρupx1q ` p1 ´ ρqupx2q when

x1 ď x2 and V px1, x2q “ p1 ´ ρqupx1q ` ρupx2q when x1 ą x2, with ρ P p1{2, 1q, so the

agent displays disappointment aversion. It is straightforward to check that if u is strictly

concave, then the agent’s utility is maximized at x1 “ x2 at observations 1 and 2 so long

as ρ ě 1{p1 ` q2q and ρ ě q1{p1 ` q1q. Since we assume that 1{q1 ě q2, the first inequality

is tighter than the second. Let us set ρ “ 1{p1 ` q2q. It remains for us to find a Bernoulli

function that rationalizes the third observation. It suffices to find u : R` Ñ R` such that

u1 ą 0 and u2 ă 0 and u1pcq and u1pdq satisfy the first order condition

ρu1pcq

p1´ ρqu1pdq
“

1

q2

u1pcq

u1pdq
“

1

q3
.

Since d ą c and q2 ą q3, such a u must exist.

3. Measuring departures from rationalizability

The revealed preference tests presented in the previous section are ‘sharp’, in the sense

that a data set either passes the test for a given model or it fails. This either/or feature of

the tests is not particular to our results but is true of all classical revealed preference tests,

including Afriat’s. It would, of course, be desirable to develop a way of measuring the extent

to which a given class of utility functions succeeds or fails in rationalizing a data set, and the

most common approach adopted in the revealed preference literature to address this issue

was developed by Afriat (1972, 1973) and Varian (1990) in the context of classical data sets,

i.e., data sets with classical budget sets (see (1)).30,31 The basic idea is that if a consumer’s

choice fails to maximize utility, then it is natural to compare what he spent with what he

could have spent in order to achieve the same utility level. This gives us a metric to quantify

the utility loss in expenditure terms. We now give an account of this approach and explain

how Theorem 1 is useful for calculating this metric.

30 For examples where Afriat-Varian type indices are used to measure a model’s fit, see Mattei (2000),

Harbaugh, Krause, and Berry (2001), Andreoni and Miller (2002), Choi et al. (2007), Beatty and Crawford

(2011), Choi et al. (2014), and Halevy, Persitz, and Zrill (2018). See also Echenique, Lee, and Shum (2011),

which develops and applies a related index called the money pump index.
31 Varian (1990) and Halevy, Persitz, and Zrill (2018) discuss why such measures may be more suitable

than other measures such as the sum of squared errors between observed and predicted demands.
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Let O “ tpxt,ptquTt“1 be a classical data set. For any number et P r0, 1s, we define

Bt
petq “ Bppt, etpt

¨ xt
q Y txt

u

“ tx P Rs̄
` : pt

¨ x ď etpt
¨ xt
u Y txt

u.
(14)

Notice that when et “ 1, this set coincides with the true budget set Bppt,pt ¨ xtq (see (1)).

If et ă 1, then Btpetq is a shrunken version of this set that retains the observed choice xt,

but removes all bundles for which total expenditure at pt is strictly higher than etpt ¨xt, i.e.,

those bundles x where pt ¨ x ą et pt ¨ xt. Clearly Btpetq shrinks with the value of et.

Let U be a collection of utility functions defined on Rs̄
` belonging to a given family; for

example, U could be the family of locally nonsatiated utility functions (which was the family

considered by Afriat (1972, 1973) and Varian (1990)). We say that the modified data set

Opeq “ tpxt, BtpetqquTt“1 is rationalizable by U if there is U P U such that Upxtq ě Upxq for

all x P Btpetq. Notice that if Opeq is rationalizable by U , then so is Ope1q for any e1 ă e;

in other words, shrinking budget sets will make it easier for rationalizability to hold. Notice

also that so long as Upxq ě Up0q for all x ě 0 for some U P U , then Opeq is rationalizable

at e “ 0 (since Btp0q “ t0,xtu for all t). Of course, in general Opeq will be rationalizable

by U without shrinking budget sets so drastically. This suggests that if O “ tpxt,ptquTt“1

is not itself rationalizable by U , then one way of measuring the severity of this failure is to

measure the extent to which budget sets need to shrink to obtain rationalizability. This is

the key idea behind the indices put forward by Afriat and Varian.

Afriat’s proposal is to shrink all budget sets by the same factor e (so e “ pe, e, . . . , eq)

and to find the largest number e at which Opeq is rationalizable by U . Afriat refers to

sup te : Ope, e, . . . , eq is rationalizable by Uu

as the critical cost efficiency index. Of course if O “ tpxt,ptquTt“1 is itself rationalizable by

U , then this index equals 1. If this index equals e˚ ă 1, then it means that there is some

utility function in U for which the observed choice xt is superior to every bundle that costs

e˚pt ¨ xt or less, but rationality is limited because there is some observation t1 and a bundle

y costing more than e˚pt1

¨xt1

but strictly less than pt1

¨xt1

that gives higher utility than xt1

.

The alternative measure proposed by Varian (1990) allows different budget sets to shrink

by different factors; Varian’s inconsistency index is defined as the smallest sum of square
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differences between the efficiency vector e and the vector p1, 1, . . . , 1q; formally, it is

inf
T
ÿ

t“1

p1´ etq2 subject to Opeq being rationalizable by U .

Of course, if O is rationalizable by U , then there is no inconsistency and Varian’s index

equals 0. There is a sense in which the Varian efficiency index is more discriminating than

the one proposed by Afriat, but Afriat’s measure is the one more commonly used because it

is much easier to compute: while Afriat’s measure simply requires searching for a threshold

e at which the modified data set is just rationalizable by U ,32 calculating Varian’s index

requires searching through all efficiency vectors e.33

In our empirical analysis in Section 5, we use Afriat’s efficiency index, because it is easy

to compute and because it facilitates comparison with other papers, which mostly use the

same index. But we also carry calculate Varian’s index for some (though not all) of the

models we consider (see Seciton A8 in the Online Appendix).

3.1 Testing the EU-rationalizability of Opeq

Whether one is calculating Afriat’s index or Varian’s, it will require checking if the

modified data set Opeq “ tpxt, BtpetqquTt“1 is rationalizable by U , at a given efficiency vector

e “ pe1, e2, . . . , eT q. When U is the family of all locally nonsatiated utility functions, Afriat

(1972, 1973) provides a necessary and sufficient condition for the rationalizability of Opeq “

tpxt, BtpetqquTt“1 (which we describe in greater detail in Section A5 of the Online Appendix).

In the case where U is the family of expected utility or rank dependent utility functions,

Theorem 1 provides us with a way of testing rationalizability within these families.

To be specific, consider a data set O “ tpxt,ptquTt“1 collected from an experiment in

which state s occurs with probability πs ą 0 at every observation. Suppose that for a

given e “ petqTt“1, we would like to check whether Opeq is EU-rationalizable or, in the

language of this section, whether it is rationalizable by U , where U : Rs̄
` Ñ R` is in U if

32 The binary search algorithm works as follows. We first set the lower and upper bounds on e˚ to eL “ 0

and eH “ 1, respectively. We then check whether the data set passes or fails the test at e “ peL ` eHq{2; if

it passes the test, then we update both e˚ and its lower bound to peL ` eHq{2; if it fails the test, then we

update e˚ to eL and the upper bound on e˚ to peL ` eHq{2. We then repeat the procedure, selecting and

testing a new midpoint. The algorithm terminates when the lower and upper bounds on e are sufficiently

close, in our case within 10´6 of one another.
33 In fact, it is known that calculating Varian’s index is an NP hard problem (Smeulders et al., 2014).
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(a) Modified data set with e “ pe1, e2, 1q (b) Modified data set with lattice inserted

Figure 4: The lattice method applied to a modified data set

Upxq “
řs̄

s“1 πsupxsq for some Bernoulli function u : R` Ñ R`. By Theorem 1, a necessary

and sufficient condition for rationalizability is that there is a strictly increasing function

ū : X Ñ R` that satisfies (8) and (9), which form a set of linear conditions. Note that the

constraint set at observation t is Btpetq (which is not a linear or even convex budget set) and

its downward extension is tx P Rs̄
` : pt ¨ x ď etpt ¨ xtu Y tx P Rs̄

` : x ď xtu.

As an illustration, we return to the example first depicted in Figure 1a and suppose we

shrink B1 and B2 by e1, e2 ă 1 respectively but leave B3 as it is (so that e “ pe1, e2, 1q), as

shown in Figure 4a. The downward extensions of B1pe1q, B2pe2q, are depicted in Figure 4b,

along with B3 (which is unchanged and coincides with its downward extension). In this case,

X ˚ “ t0, 1, 2, 3, 4, 6u, we can choose X “ X ˚, and (by Theorem 1) Opeq is EU-rationalizable

if and only if there is ū that solves the inequalities in Table 3. We again have the strict

monotonicity conditions in the top left panel, with the other panels listing the optimality

conditions applicable to x1, x2, and x3. There are 17 bundles in B1
pe1q X L (besides the

observed choice x1 “ p2, 4q); two of them, p1, 6q and p3, 0q, are undominated and both lie on

the upper boundary, which leads (by condition (8)) to the weak inequalities displayed in the

top right panel. There is just one undominated bundle, p2, 2q, in B2
pe2q X L (besides x2);

this leads to the strict inequality displayed in the bottom left panel (by condition (9)). The

optimality conditions on x3 are unchanged from those displayed in Table 1.
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Monotonicity of ū Optimality of x1 “ p2, 4q

ūp6q ą ūp4q ą ūp3q ą ūp2q π1
1ūp2q ` π

1
2ūp4q ě π1

1ūp1q ` π
1
2ūp6q

ūp2q ą ūp1q ą ūp0q π1
1ūp2q ` π

1
2ūp4q ě π1

1ūp3q ` π
1
2ūp0q

Optimality of x2 “ p6, 1q Optimality of x3 “ p4, 3q

π1ūp6q ` π2ūp1q ą π1ūp2q ` π2ūp2q π1ūp4q ` π2ūp3q ą π1ūp2q ` π2ūp4q

π1ūp4q ` π2ūp3q ą π1ūp6q ` π2ūp1q

Table 3: Conditions on ū for the EU-rationalizability of Opeq

Checking for the RDU-rationalizability of Opeq involves a similar procedure, with the

functional form modified in the way explained in Section 2.4.

3.2 Approximate smooth rationalizability

While Theorem 1 guarantees that there is a Bernoulli function u that extends ū : X Ñ R`
and rationalizes the data when the required conditions are satisfied, the Bernoulli function

is not necessarily smooth. The smoothness of u is commonly assumed in applications of

expected utility and related models and its implications can appear to be stark. For example,

suppose that it is commonly known that states 1 and 2 occur with equal probability and that

we observe the agent choosing p1, 1q at a price vector pp1, p2q, with p1 ‰ p2. This observation

is incompatible with a smooth EU model; indeed, given that the two states are equiprobable,

the slope of the indifference curve at p1, 1q must equal ´1 and thus it will not be tangential

to the budget line and will not be a local optimum. On the other hand, it is trivial to check

that this observation is EU-rationalizable in our sense. In fact, one could even find a concave

Bernoulli function u : R` Ñ R` for which p1, 1q maximizes expected utility. (Such a u will

be continuous and strictly increasing, but have a kink at 1.)

These two facts are reconcilable. Given any strictly increasing and continuous function

u defined on a compact interval of R`, there is a strictly increasing and smooth function ũ

that is uniformly and arbitrarily close to u on that interval. Thus if a Bernoulli function u

rationalizes O “ tpxt, BtquTt“1 by tφp¨, tquTt“1, then for any efficiency threshold e P p0, 1q, then

there is a smooth Bernoulli function ũ that rationalizes O1 “ tpxt, BtpeqquTt“1 by tφp¨, tquTt“1.

In other words, if a data set is rationalizable by a Bernoulli function, then it can also be
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rationalized by a smooth Bernoulli function, for any efficiency threshold arbitrarily close to

1. In this sense, imposing a smoothness requirement on the Bernoulli function does not

radically alter a model’s ability to explain a data set.

4. Concave Bernoulli functions

A common assumption in applications of expected utility (EU) theory is that agents are

risk averse, which is equivalent to the concavity of the Bernoulli function. The necessary

and sufficient conditions that we have developed for EU-rationalizability (with Theorem 1)

neither require nor guarantee that the Bernoulli function is concave. This distinction is

significant because there are data sets which can be rationalized by the EU model, but only

with nonconcave Bernoulli functions. This will be made readily apparent in the empirical

implementation in Section 5, but we also provide an intuitive example of such a phenomenon,

in a classical data set with two observations, in Section A4 of the Online Appendix.

In this section we provide a test for concave EU-rationalizability, i.e., EU-rationalizability

with a concave Bernoulli function. (Recall that, by definition, Bernoulli functions are con-

tinuous and strictly increasing.) Unfortunately, we do not, in this case, have a result like

Theorem 1 which is applicable to observations drawn from general compact constraint sets.

Our procedure works in a narrower set of environments: it allows us to test for the concave

EU-rationalizability of a classical data set O “ tpxt,ptquTt“1, and also when it is modified

by e “ petqTt“1, i.e., the data set Opeq “ tpxt, BtpetquTt“1 (with Btpetq defined by (14)). Note

that there is already a test of concave EU-rationalizability for classical data sets (see Varian

(1983a) and Green and Srivastava (1986)), but that test makes use of the sufficiency of the

first order conditions, which in turn relies crucially on the linearity of the classical budget

sets; since Btpetq is not a convex set, that method does not obviously extend to testing

for the concave EU-rationalizability of Opeq. The added value of our approach lies in its

applicability to modified data sets, and this extension is important because (as we explain

in Section 3) it enables us to calculate the critical cost efficiency index in the event that O

itself is not concave EU-rationalizable.

Throughout this section we confine our discussion to the case where there are just two

states of the world with known probabilities π1 and π2. The results carry over to the multi-
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state case, which is covered in Section A4 of the Online Appendix. That section also contains

a test for the rank dependent utility model with a concave Bernoulli function.

Let r̄ ą 0 be a number such that r̄pts ě pt ¨ xt for all t and s. In other words, r̄ is a

consumption level that beyond which nothing is affordable to the subject in any state and

at any observation. Clearly, for the purposes of rationalizing a data set, the behavior of the

Bernoulli function beyond r̄ is of no relevance. We define

X ˚˚ “ t0u Y tr P R` : r “ xts for some t and su Y tr̄u (15)

and let X Ă R` be a finite set containing X ˚˚.34

For any function h̄ : X Ñ R`, we define the piecewise linear extension of h̄ (or simply

linear extension of h̄ for short) as the function h̄` : R` Ñ R` that is linear between adjacent

points in X , with h̄`prq “ h̄prq for all r P X .35,36 Thus if r ă r1 are two adjacent points in X

and a lies between them with a “ λr`p1´λqr1 for λ P p0, 1q, then h̄`paq “ λh̄prq`p1´λqh̄pr1q.

The essence of our test is as follows. Suppose Opeq is EU-rationalizable by the concave

Bernoulli function u : R` Ñ R`. Let ū : X Ñ R` be the restriction of u to X and let

ū` : R` Ñ R` be the linear extension of ū. We claim that ū` also rationalizes Opeq, which

implies that in searching for concave Bernoulli functions that EU-rationalize Opeq, we can

confine our search to linear extensions of functions defined on X . We then show that with

Bernoulli functions of this type, checking that the expected utility of xt is greater than a

certain finite set in Btpetq is sufficient to guarantee that the same holds for all bundles in

Btpetq.

We first show that if u rationalizes Opeq, then so does ū`. Indeed, by definition, ū`prq “

uprq for all r P X and the concavity of u guarantees that uprq ě ū`prq for all r P r0, r̄s.

Thus π1upx
t
1q ` π2upx

t
2q “ π1ū`px

t
1q ` π2ū`px

t
2q for all xt “ pxt1, x

t
2q and, for any other bundle

x “ px1, x2q, we have π1upx1q ` π2upx2q ě π1ū`px1q ` π2ū`px2q. Since

π1upx
t
1q ` π2upx

t
2q ě π1upx1q ` π2upx2q for all x “ px1, x2q P B

tpetq,

we also have

π1ū`px
t
1q ` π2ū`px

t
2q ě π1ū`px1q ` π2ū`px2q for all x “ px1, x2q P B

tpetq.

34 The definition of X ˚˚ is similar to X ˚ (see (5)), but the latter does not include r̄.
35 Two points r and r1 are adjacent in X if there is no point in X between r and r1.
36 Strictly speaking, h̄` is not uniquely defined for r ą r̄, but the value of h̄` beyond r̄ is irrelevant.
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We define N “ tpa, bq P R2
` : a, b P r0, r̄s and either a or b is in X u. The set N looks a

like a net containing L “ X 2. If the concave Bernoulli function u : R` Ñ R` rationalizes

Opeq, then, for all t,

π1ū`px
t
1q ` π2ū`px

t
2q ě π1ū`px1q ` π2ū`px2q for all x “ px1, x2q P N X BBppt, etpt ¨ xtq. (16)

(Recall that BBppt, etpt ¨ xtq is the upper boundary of the budget set Bppt, etpt ¨ xtq and is

equal to the budget line, i.e., tx P R2
` : pt ¨ x “ etpt ¨ xtu.) Inequality (16) is obviously true

since ū` also rationalizes Opeq, N X BBppt, etpt ¨ xtq is a subset of Btpetq (see (14)) and xt

is optimal in Btpetq.

Proposition 1. Suppose the data set Opeq is EU-rationalizable with probability pπ1, π2q "

p0, 0q by a concave Bernoulli function u : R` Ñ R`. Let X be a finite set in R` containing

X ˚˚ (as defined by (15)). Then the restriction of u to X , ū : X Ñ R`, has the following

properties: (i) ūprq ă ūpr1q if r ă r1; (ii) for any three adjacent points r ă r1 ă r2 in X ,

ūpr1q ´ ūprq

r1 ´ r
ě
ūpr2q ´ ūpr1q

r2 ´ r1
;

and (iii) ū` : R` Ñ R`, the linear extension of ū, satisfies (16) at all t.

Conversely, if ū : X Ñ R` satisfies (i), (ii), and (iii), then its linear extension ū` is a

strictly increasing and concave Bernoulli function that EU-rationalizes Opeq.

If Opeq is EU-rationalizable by a concave Bernoulli function u, then (i) holds because u is

increasing, (ii) holds because u is concave, and we have already shown that (iii) is necessary.

The proof of the converse is in the Appendix. The import of this proposition is that it

provides us with an easy-to-implement test, since the conditions (i) to (iii) translate into a

finite set of linear inequalities on a finite set of unknowns tūprqurPX , and checking whether

or not a solution exists is a straightforward matter.

As an illustration of how this test works, we consider the data setOpeq previously depicted

in Figure 4a. Given that the three observed choices are p2, 4q, p6, 1q, and p4, 3q, and choosing

r̄ “ 10, we obtain X ˚˚ “ t0, 1, 2, 3, 4, 6, 10u. Letting X “ X ˚˚, the test involves setting up a

collection of linear inequalities in the unknowns tūprqurPX (corresponding to conditions (i)

to (iii)) and checking if it has a solution. Conditions (i) and (ii) are clear enough, so let

us explain condition (iii), which guarantees the optimality of the observed choice xt over
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Figure 5: Test for concave EU-rationalizability

a finite set of alternatives in Btpetq. To be specific, consider its restrictions on the second

observation. In Figure 5 we zoom in on B2pe2q, where N is indicated by the dashed lines

dividing R2
`. There are nine bundles in N X BB2pp2, e2p2 ¨ x2q, indicated by small squares

on the budget line.37 Condition (iii) requires that the expected utility of x2, computed with

ū`, be higher than the expected utility of those nine bundles. This translates into nine linear

inequalities in the unknowns tūprqurPX . For example, the bundle a “ p1, 2λ ` 3p1 ´ λqq for

some λ P p0, 1q (which can easily be computed). The expected utility of a is

π1ū`p1q ` π2ū`p2λ` p1´ λq3q “ π1ūp1q ` π2rλūp2q ` p1´ λqūp3qs,

since ū` is piecewise linear. Condition (iii) requires

π1ūp6q ` π2ūp1q ě π1ūp1q ` π2λūp2q ` π2p1´ λqūp3q,

One could work out the other eight inequalities in a similar fashion.

37 Their coordinates can be easily computed from N and BB2pp2, e2p2 ¨ x2q.
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5. Implementation

We study the data collected from the well known portfolio choice experiment in Choi et

al. (2007), and from two other similar, more recent, experiments in Choi et al. (2014) and

Halevy, Persitz, and Zrill (2018). The new tests developed in this paper allow us to evaluate,

with a completely nonparametric approach, the empirical performance of different models of

decision making under risk.

5.1 Model performance

The experiment in Choi et al. (2007) was performed on 93 undergraduate subjects at the

University of California, Berkeley. Every subject was asked to make consumption choices on

50 decision problems under risk. Each subject divided her budget between two Arrow-Debreu

securities, with each security paying one token if the corresponding state was realized, and

zero otherwise. In a symmetric treatment applied to 47 subjects, each state of the world

occurred with probability 1{2, and in a (balanced) asymmetric treatment applied to 46

subjects, the probabilities of the states were 1{3 and 2{3. These probabilities were objectively

known. Lastly, income was normalized to one, and the state prices were chosen at random and

varied across rounds and subjects. In their analysis, Choi et al. (2007) first tested whether

each subject’s behavior is consistent with maximizing a locally nonsatiated utility function

by performing a GARP test (or, strictly speaking, a modified version of the GARP test which

characterizes rationalizability at a given (Afriat) cost efficiency threshold). Those subjects

who passed GARP at a sufficiently high efficiency threshold were then fitted individually to

a two-parameter version of the disappointment aversion model of Gul (1991).38

The lattice method developed in this paper makes it possible to analyze the same data

using purely revealed preference techniques. By applying the tests developed in Sections 2

and 3, we can calculate the efficiency index at which a subject’s choice behavior is ratio-

nalizable by the expected utility (EU), disappointment aversion (DA), and rank dependent

utility (RDU) models. We can also do the same with the additional requirement that the

Bernoulli function is concave, using the results in Section 4 and in Section A4 of the Online

Appendix; we shall refer to these models as CEU, CDA, and CRDU.

38 One parameter governed the distortion of state probabilities, and the other the degree of abso-

lute/relative risk aversion.
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It is well known that all of these models are contained within the larger class of stochas-

tically monotone utility functions; these utility functions give strictly higher utility to the

bundle x compared to y whenever x first order stochastically dominates y (with respect to

the objective state probabilities) and gives them the same utility whenever they are stochas-

tically equivalent. In the Choi et al. (2007) experiment, there are just two states. In this

case it is straightforward to check that when π1 “ π2 “ 1{2, a utility function is stochas-

tically monotone if and only if it is strictly increasing and symmetric, and when π2 ą π1,

a utility function U is stochastically monotone if and only if it is strictly increasing and

Upa, bq ą Upb, aq whenever b ą a. Lastly, stochastically monotone utility functions are

contained within the still larger class of locally nonsatiated utility functions.

Afriat’s Theorem tells us that the rationalizability by locally nonsatiated utility maxi-

mization is observationally characterized by GARP. A test of stochastically monotone utility

maximization was recently developed by Nishimura, Ok, and Quah (2017); this test has fea-

tures similar to GARP and we shall refer to it as F-GARP (where ‘F’ stands for first order

stochastic dominance). In both cases, it is also known that the axioms can be extended

to test for rationalizability on modified data sets and can therefore be used to calculate

the critical cost efficiency index (see Section 3) at which the data set is rationalizable. An

explanation of these axioms can be found in Section A5 of the Online Appendix.

To recap, for each subject in Choi et al. (2007), we calculate the critical cost efficiency

index at which that subject is consistent with a given model. There are a total of 8 mod-

els under consideration (locally nonsatiated utility maximization (GARP), stochastically

monotone utility maximization (F-GARP), and RDU, DA, EU, CRDU, CDA, and CEU

maximization). Therefore, to each subject under the asymmetric treatment, we assign 8 ef-

ficiency indices (one for each model), while to each subject under the symmetric treatment,

we assign 6 indices (since in the symmetric case, the RDU and DA models are identical, and

the CRDU and CDA models are identical). When one model is, by definition, more stringent

than another, its efficiency index must be weakly lower. So for a given subject, the efficiency

index corresponding to GARP will be the highest, and the index corresponding to CEU will

be the lowest. More generally, for each subject, the efficiency indices must be ordered the
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π1 “ 1{2 π1 ‰ 1{2

e “ 0.90 e “ 0.95 e “ 1.00 e “ 0.90 e “ 0.95 e “ 1.00

GARP 38/47 (81%) 32/47 (68%) 12/47 (26%) GARP 37/46 (80%) 29/46 (63%) 4/46 (9%)

F-GARP 30/47 (64%) 23/47 (49%) 1/47 (2%) F-GARP 33/46 (72%) 26/46 (57%) 3/46 (7%)

RDU 30/47 (64%) 23/47 (49%) 1/47 (2%)
RDU 33/46 (72%) 24/46 (52%) 2/46 (4%)

DA 20/46 (43%) 12/46 (26%) 1/46 (2%)

EU 30/47 (64%) 18/47 (38%) 1/47 (2%) EU 18/46 (39%) 12/46 (26%) 1/46 (2%)

CRDU 24/47 (51%) 12/47 (26%) 0/47 (0%)
CRDU 24/46 (52%) 14/46 (30%) 1/46 (2%)

CDA 13/46 (28%) 6/46 (13%) 1/46 (2%)

CEU 23/47 (49%) 10/47 (21%) 0/47 (0%) CEU 11/46 (24%) 5/46 (11%) 0/46 (0%)

Table 4: Pass rates by efficiency threshold (Choi et al., 2007)

same way the models are nested, i.e.,

eCEU ď eEU ; eCDA ď eDA; eCEU ď eCDA ď eCRDU ď eRDU ;

eEU ď eDA ď eRDU ď eF´GARP ď eGARP

Basic rationalizability. Table 4 gives pass rates for the different models at three different

thresholds of the critical cost efficiency index: 0.9, 0.95, and 1, with the last corresponding to

exact rationalizability.39 Across both treatments, 16 out of 93 subjects obey GARP exactly

and are therefore consistent with locally nonsatiated utility maximization, with subjects in

the symmetric treatment performing distinctly better than those in the asymmetric treat-

ment. Of the 16 subjects who pass GARP, only 4 pass F-GARP, and still fewer subjects are

rationalizable by the more stringent models. Given that we observe 50 decisions for every

subject, it is not altogether surprising that so many subjects should have violated GARP

(let alone the more stringent conditions). The picture changes significantly once we allow

for some error in the form of cost inefficiencies: about 81% of the subjects pass GARP at

efficiency thresholds exceeding 0.9, and 66% at thresholds exceeding 0.95, suggesting that

a large fraction of the sample does indeed behave in a way that is broadly compatible with

utility maximization.40

39 The efficiency indices corresponding to GARP were also calculated by Choi et al. (2007). The indices

corresponding to all other models are new.
40 Furthermore, we know that the experiment provides a high-powered test of utility maximization, in the

sense that we can safely dismiss the possibility that this outcome would have occurred randomly. Indeed,

as Choi et al. (2007) have already pointed out, these pass rates are very different from what arises if one

instead calculates efficiency indices for (uniformly) randomly generated budgetary data, following Bronars
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(a) π1 “ 1{2 (b) π1 ‰ 1{2

Figure 6: Distributions of efficiency indices (Choi et al., 2007)

In Figure 6, we depict (separately) the distributions of efficiency indices across subjects for

5 models under the symmetric treatment, and 6 models under the asymmetric treatment.41

The models are nested by definition, so one would expect the efficiency distributions to be

stacked, as indeed they are. In both panels, the topmost curve represents the distribution

of efficiency indices corresponding to GARP (in other words, rationalizability by locally

nonsatiated utility maximization), and the bottommost curve represents the distribution of

indices corresponding to CEU maximization, which is the most stringent model.

The EU model. We can see from Table 4 that around half of all subjects passing GARP

are then consistent with the EU model (at the 0.9 or 0.95 efficiency thresholds).42 One might

worry that the experimental design is insufficiently discriminating or powerful, so that, at

a given efficiency threshold, random GARP-consistent data sets would have passed the EU

test at the same rate, but this is far from the case. We can confirm that the pass rate for

the EU model on a large collection of randomly generated GARP-consistent data sets is

effectively zero. In fact, we can say even more. In Table 5, we report the results from a large

collection of randomly generated data sets, all of which pass F-GARP at the given efficency

(1987); in that case, the proportion of synthetic (random) subjects passing GARP at efficiency thresholds

exceeding 0.9 is very close to zero. (See Figure 4 in Choi et al. (2007).)
41 We exclude the CRDU and CDA distributions in order to avoid congestion; the interested reader can

find those distributions in Section A6.3 of the Online Appendix.
42 The precise ratios are p30` 18q{p38` 37q “ 64% at the 0.9 threshold, and p18` 12q{p32` 29q “ 49%

at the 0.95 threshold.
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π1 “ 1{2 π1 ‰ 1{2

e “ 0.90 e “ 0.95 e “ 0.90 e “ 0.95

RDU 25% 1%
RDU 1% 0%

DA 0% 0%

EU 13% 1% EU 0% 0%

Table 5: Pass rates for random F-GARP-consistent data (Choi et al., 2007)

threshold (either 0.9 or 0.95).43 At the 0.9 threshold, the pass rate for the EU model in

these randomly generated data is 13% under the symmetric treatment and 0% under the

asymmetric treatment; at the 0.95 threshold, the pass rates are effectively zero under both

treatments. In other words, the observed EU pass rates are substantially higher than what

would have arisen had the subjects been merely maximizing some stochastically monotone

utility function. The CEU pass rates (where concavity is imposed on the Bernoulli function)

are lower than the EU pass rates, but these too are substantially higher than the EU pass

rates on randomly generated F-GARP-consistent data.44

That said, it is worth emphasizing that there is a significant difference in the performance

of the GARP and EU tests. Had the distributions for GARP and EU in Figure 6 been

very close, we could have concluded that while subjects make mistakes when choosing from

budget sets (since they fall short of complete consistency with basic rationality), they are

nonetheless consistent with the EU model once that has been accounted for. However, since

the distributions are distinct, that is not the case for a significant number of subjects.

We can have a sense of the preference misspecification, i.e., the extent to which the EU

model misspecifies each subject’s preference, by looking at the difference in the efficiency

index between GARP and the EU model.45 The median difference is 0.027 for subjects

in the symmetric treatment and 0.075 for those in the asymmetric treatment. It exceeds

0.05 for 17 out of 47 subjects in the symmetric treatment and 30 out of 46 subjects in the

43 Section A6.1 of the Online Appendix describes the procedure we use to randomly generate GARP (or

F-GARP) consistent data at a given efficiency threshold.
44 Naturally, the CEU pass rates on random F-GARP-consistent data sets must be even lower than the

EU pass rates reported in Table 5, since CEU is a more stringent model.
45 We are broadly following Halevy, Persitz, and Zrill (2018) in using this measure of preference misspeci-

fication. Halevy, Persitz, and Zrill (2018) compare the change in the money metric index (which is essentially

Varian’s inconsistency index) between GARP and a parametric version of the RDU/DA model and interpret

that difference as a measure of the misspecification.
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asymmetric treatment.

The DA and RDU models. Can these models play a useful role in explaining behavior

which is not captured by the EU model? Under the symmetric treatment, there is little scope

for these models to capture subjects not already compatible with the EU model, since the

latter is already accommodating most of the subjects who pass F-GARP. (Note the closeness

of the F-GARP and EU distributions in Figure 6a.)

However, the RDU model appears to capture subject behavior more successfully than the

EU model under the asymmetric treatment, covering almost all F-GARP-consistent behavior

(see Table 4 or Figure 6b).46 When we require the Bernoulli function to be concave, the rank

dependent utility model can no longer account for nearly all F-GARP-consistent behavior,

but even then it captures many more subjects than expected utility (compare CRDU with

CEU). On the other hand, that is not true of the DA model. Under both the symmetric and

asymmetric treatments, the DA pass rates are only slightly higher than the EU pass rates,

and the same is true when comparing CDA with CEU.

Table 6 summarizes these observations. We record (as a fraction of all subjects within

each treatment) the pass rates for the CEU and EU models. We also report the marginal

contributions of the RDU and DA models (relative to EU or CEU) in explaining the data.

For example, under the asymmetric treatment, at the 0.9 threshold, 15 subjects out of 46

pass RDU but fail EU (see the row beginning RDU zEU); using this information, we can

form a 95% binomial proportion confidence interval on the probability that a subject is

rationalizable by RDU but not by EU, which turns out to be [0.195, 0.480].47

We conduct similar tests on the data collected by Choi et al. (2014) and Halevy, Persitz,

and Zrill (2018). In both experiments, subjects allocated investment between two Arrow-

Debreu securities, with commonly known equiprobable states; thus the designs closely re-

sembled the symmetric treatment in Choi et al. (2007).48

46 We discuss the probability distortions needed to rationalize the data in Section A6.2 of the Online

Appendix.
47 All confidence intervals in this table are exact, and calculated using the Clopper-Pearson method.
48 Since the DA and RDU models coincide when states are equiprobable, the interesting distinction we

find between them in the asymmetric treatment in Choi et al. (2007) could not be further investigated. We

think there is a case for including the asymmetric treatment in future experiments, or even to have the same

subject choosing under different state probabilities.
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π1 “ 1{2

e “ 0.9 e “ 0.95

Sample Prop. Conf. Interval Sample Prop. Conf. Interval

CEU 23/47 (0.489) [0.341, 0.639] 10/47 (0.213) [0.107, 0.357]

EU 30/47 (0.638) [0.485, 0.773] 18/47 (0.383) [0.245, 0.536]

EU zCEU 7/47 (0.149) [0.062, 0.283] 8/47 (0.170) [0.076, 0.308]

RDU zEU 0/47 (0.000) [0.000, 0.075] 5/47 (0.106) [0.035, 0.231]

CRDU zCEU 1/47 (0.021) [0.001, 0.113] 2/47 (0.043) [0.005, 0.145]

π1 ‰ 1{2

e “ 0.9 e “ 0.95

Sample Prop. Conf. Interval Sample Prop. Conf. Interval

CEU 11/46 (0.239) [0.126, 0.388] 5/46 (0.109) [0.036, 0.236]

EU 18/46 (0.391) [0.251, 0.546] 12/46 (0.261) [0.143, 0.411]

EU zCEU 7/46 (0.152) [0.063, 0.289] 7/46 (0.152) [0.063, 0.289]

DA zEU 2/46 (0.043) [0.005, 0.148] 0/46 (0.000) [0.000, 0.077]

RDU zEU 15/46 (0.326) [0.195, 0.480] 12/46 (0.261) [0.143, 0.411]

CDA zCEU 2/46 (0.043) [0.005, 0.148] 1/46 (0.022) [0.001, 0.115]

CRDU zCEU 13/46 (0.283) [0.160, 0.435] 9/46 (0.196) [0.094, 0.339]

Table 6: Confidence intervals on preference types (Choi et al., 2007)

Analysis of the Choi et al. (2014) data set This experiment was conducted on 1,182

CentERpanel adult members, where the latter is meant to be representative of the Dutch-

speaking population of the Netherlands. Each subject made allocation decisions on 25 linear

budget sets; since this is just half the number of decisions in Choi et al. (2007), the pass

rates should be higher if the subject population is the same, but it is not. As has already

been noted by Choi et al. (2014), the pass rates for GARP at any efficiency threshold are

instead lower those in Choi et al. (2007). This observation can now be extended further:

the pass rates are across the board lower for all tests, and not just GARP. This is clear if

we compare Figure 7 with Figure 6a. That said, it is also clear from these two figures that

certain qualitative features of the data are the same in both experiments. In particular,

around half the subjects who pass GARP at a given efficiency threshold are also consistent

with the EU model. There is a significant difference in the pass rates between GARP and

F-GARP, and the EU model manages to explain a very large share of subjects who pass F-

GARP. In this experiment (but unlike in Choi et al. (2007)), the CEU model also manages to

account for many subjects who pass F-GARP. Since the rank dependent utility (equivalently,

disappointment aversion) model is more stringent than F-GARP, the model’s contribution,
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Figure 7: Distributions of efficiency indices (Choi et al., 2014)

as measured by the proportion of subjects who obey RDU but not EU, or CRDU but not

CEU (at some reasonable threshold), is modest. This echoes our finding for the symmetric

treatment in Choi et al. (2007).

More details of our analysis of the Choi et al. (2014) data can be found in the Section A7

of the Online Appendix. We also explore in that section the relationship between a subject’s

efficiency indices (for different models) and various socio-economic variables and outcomes

(such as age, education, and wealth), extending the analysis in Choi et al. (2014).

Analysis of the Halevy, Persitz, and Zrill (2018) data set. This experiment was

conducted on 207 primarily undergraduate subjects at the University of British Columbia,

with a set of portfolio choice problems forming the first part of a two-part experiment. (We

discuss the second part of the experiment in Section 5.2.) Each subject made allocation

decisions on 22 linear budget sets; since this number is lower than in Choi et al. (2007)

(where each subject made decisions on 50 budget sets) and the sample population is similar,

one would expect the pass rates in Halevy, Persitz, and Zrill (2018) to be generally higher

than those in Choi et al. (2007), and this is what we find. However, the relative performance

of the different models (relative to one another) is broadly similar across the two experiments.

The EU model performs well: significantly more than half the subjects who pass GARP (at

some reasonable efficiency threshold) also pass the test for the EU model. That said, there
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Figure 8: Distributions of efficiency indices (Halevy, Persitz, and Zrill, 2018)

is still a distinct difference in performance between the models; indeed a significant number

of subjects who pass GARP fail F-GARP (and thus EU). The RDU model makes only a

modest contribution relative to EU, and similarly, consistency with the CRDU model is only

slightly higher than with the CEU model. These observations are clear in Figure 8, which

depicts the distributions of efficiency indices for different models in this data set.

While parametric models are easy to use and have other advantages, they will by defini-

tion, fit a data set less well than their nonparametric counterparts, so there is some advantage

in developing ways to assess the size of that loss of fit. Halevy, Persitz, and Zrill (2018) eval-

uated the basic rationality of their subjects (through GARP) and also the goodness-of-fit of

parametric versions of the rank dependent and expected utility models. Following their ex-

ample, we calculate the efficiency indices for the rank-dependent and expected utility models,

with the Bernoulli functions confined to the CRRA class.49 Their distributions are depicted

in Figure 8 (see the RDU-CRRA and EU-CRRA curves).

49 The algorithm for calculating the critical cost efficiency index for the EU-CRRA and RDU-CRRA

models is straightforward and does not involve the lattice method. Consider, for example, the EU-CRRA

case. At the efficiency vector e “ pe, e, . . . , eq for e P p0, 1s, we can determine if the modified data set Opeq
is consistent with EU-CRRA for a given coefficient of relative risk aversion η. We denote the EU-CRRA

utility function of the bundle x P R2
` by Upx; ηq and the EU-CRRA indirect utility at price p and income

m by V ppp,mq; ηq (the formula for which can be easily calculated). Opeq is rationalized by Up¨; ηq if and

only if Upxt; ηq ě V pppt, ept ¨ xtq; ηq for t “ 1, 2, . . . , T . This can be checked for a given η, and by letting η

take different values we can establish if Opeq is EU-CRRA-rationalizable for a given e. Lastly, we perform

a binary search over p0, 1s in order to determine the critical value of e, as described in Footnote 32.
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Two things are clear from this exercise. First, the misspecification involved in using a

parametric model appears to be high. This is suggested by Figure 8 where the pass rate

for GARP is much higher than that for RDU-CRRA or EU-CRRA.50 We can also measure

the size of the preference misspecification by the difference in the efficiency index between

GARP and RDU-CRRA for each subject. This difference exceeds 0.05 for 118 (out of 207)

subjects and exceeds 0.10 for 76 subjects. These observations are broadly in line with those

made by Halevy, Persitz, and Zrill (2018).51 Second, this misspecification is considerably

worse than that for the corresponding nonparametric model; indeed, the difference in the

efficiency index between GARP and CRDU exceeds 0.05 for 82 (out of 207) subjects and

exceeds 0.10 for 38 subjects.

Section A8 of the Online Appendix provides more analysis of the data collected by Halevy,

Persitz, and Zrill (2018). Note that Halevy, Persitz, and Zrill (2018) make use of Varian’s

inconsistency index, the calculation of which is feasible in the case of GARP and the para-

metric models they consider. We have not used Varian’s index because its calculation for

all of the nonparametric models that we consider is simply too computationally demanding.

We did, however, calculate Varian’s index (exactly) for GARP and F-GARP and also have

good approximations for the EU model. In all three cases, the indices of Afriat and Varian

are highly correlated among subjects.

Comparison with empirical findings in other papers. There is a large empirical lit-

erature that evaluates the performance of different models of choice under risk using experi-

mental or field data, and our results appear to be broadly in line with the findings obtained

in earlier studies, even though the very different empirical methods employed make formal

comparisons difficult. In particular, other papers have concluded that the rank dependent

utility model performs well (see, for example, Bruhin, Fehr-Duda, and Epper (2010) and

Barseghyan et al. (2013) and their references), which is something we also notice, at least

in the asymmetric treatment in Choi et al. (2007). We find that the expected utility model

captures a significant portion of subjects, though by no means everyone, which is broadly

50 For example, at any efficiency threshold of 0.9, more than 90% of subjects pass GARP but fewer than

60% are consistent with RDU-CRRA.
51 Using Varian’s index rather than Afriat’s, Halevy, Persitz, and Zrill (2018) reach a similar conclusion

that the contribution to inconsistency from parametric misspecification is large relative to that from the

failure of basic rationality.
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consistent with the not altogether uncommon finding that this canonical model puts in a

respectable performance (see, for example, Hey and Orme (1994)). Lastly, the relatively

poor performance of the disappointment aversion model has also been noted in some other

studies such as Hey and Orme (1994) and Barseghyan et al. (2013).

5.2 Out-of-sample predictions

We use the data from Choi et al. (2007) and Halevy, Persitz, and Zrill (2018) to make

out-of-sample predictions. For different reasons, neither experiment is ideal for our purpose,

but these applications are still indicative of the potential usefulness of our procedure.

The Halevy, Persitz, and Zrill (2018) data. In the second part of the experiment

in Halevy, Persitz, and Zrill (2018), each subjects was asked to make a number of choices

between two lotteries: lottery A, which pays off some amount for sure, and lottery B, which

has two unequal but equiprobable payoffs.52 The objective was to adjudicate between two

competing parametric recovery approaches, one using nonlinear least squares (NLLS) and

another using a money metric index (MMI) (which is essentially Varian’s inconsistency in-

dex). The recovery exercise first involved fitting (using either procedure) the RDU-CRRA

model to each subject’s portfolio choice data (from the first part of the experiment). This

yielded two parameters for each subject: β, which governs the probability distortion (see

Section 2.4), and η, the coefficient of relative risk aversion. With these parameters, one

could then predict the subject’s choice between any two lotteries A and B. The lotteries A

and B were not randomly chosen, but instead tailor-made to each subject so that the two

recovery methods would lead to different predictions for each pair.

Our nonparametric approach could also be used to predict lottery choices. First, for a

given model, say RDU, we calculate a subject’s efficiency index. Suppose the index is e˚;

then we test whether a preference for A over B is consistent with the RDU model given

the data set tpxt, Btpe˚qquTt“1 (in the sense explained in Section 2.3). Since tpxt, Btpe˚qquTt“1

is RDU-rationalizable by definition, either a preference for A over B or its reverse will be

consistent. It is also possible that both are consistent, in which case the model cannot

discriminate between these lotteries; note that this is where a nonparametric model differs

52 For example, lottery A might pay 50 for sure and lottery B might pay 60 and 40 with equal probability.
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from a parametric model, since the recovered parameters are typically unique in the latter

(which lead to unique predictions).

In the experiment, each subject (of 207) was asked to make 9 pairwise choices, giving

1,863 binary comparisons in total. Using the RDU model, we find that only 78 of these cases

(around 4%) are discriminating; among these 78 cases, 48 are correctly predicted, about 62%.

Under CRDU, discrimination is sharpened, with 949 (51%) being discriminating, and among

these, 507 (53%) are correctly predicted. Lastly, under RDU-CRRA, which is of course a

parametric model, all 1,863 binary comparisons are discriminating and 1,051 of these (56%)

are correctly predicted.53 The final result is in line with Halevy, Persitz, and Zrill (2018),

which correctly predicts 54% of 1,827 binary choices when the RDU-CRRA parameters are

recovered using the MMI method (which means, given the special way lotteries were chosen

in that experiment, that the NLLS method is correct for 46% of the choices).54,55

The Choi et al. (2007) data. The special way in which lotteries are chosen in the

Halevy, Persitz, and Zrill (2018) experiment gives us only limited information on whether

our nonparametric procedure is discriminating enough to be useful for making out-of-sample

predictions. To explore this issue further, we conduct a simple but instructive exercise using

the data collected for the symmetric treatment in Choi et al. (2007). We first identify

those subjects with RDU efficiency indices exceeding 0.9. For each subject, we choose an

observation at random; call it t1. We then randomly choose a bundle y that is undominated56

by xt1

and satisfies pt ¨ y “ 0.9 pt1

¨ xt1

. We then ask whether we could ‘predict’ the choice

between xt1

and y from the remaining 49 portfolio choice observations (using the procedure

set out in Section 2.3). Since we have chosen subjects with efficiency indices above 0.9, a

preference for xt1

over y must be consistent with the 49 portfolio choice decisions. The issue

is whether a preference for y over xt1

is also consistent with the 49 observations; if so, it

means that the nonparametric procedure has failed to be discriminating ‘out-of-sample.’

Under RDU, 30 of 47 subjects have efficiency indices exceeding 0.9. For each of these

53 In a sense, RDU-CRRA is both correct more often and wrong more often than CRDU.
54 Notice that 4 subjects were removed in Halevy, Persitz, and Zrill (2018), giving a sample of 203 subjects.
55 Since the lottery pairs in this experiment were chosen in a very special way, the reader should take

care not to conclude that these methods, whether parametric or otherwise, make correct predictions only

half the time when presented with a ‘random’ pair of lotteries.
56 By undominated, we mean that if y “ pa, bq then xt1

ğ pa, bq and xt1

ğ pb, aq.
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subjects, we perform two independent (i.e., drawn from different budgets) predictive exercises

and find that 50 of 60 (83%) of these are predictively discriminating. In the case of CRDU,

24 of 47 subjects have efficiency indices exceeding 0.9 and we find that 46 of 48 (96%) of

the predictive exercises are discriminating. Obviously this simple exercise is no more than

indicative, but it does suggest that our nonparametric procedure is capable of making sharp

predictions out-of-sample.

Appendix

Proof of Theorem 1. We require the following lemma.

Lemma 1. Let tCtuTt“1 be a finite collection of constraint sets in Rs̄
` that are compact and

downward closed (i.e., if x P Ct then so is y P Rs̄
` such that y ă x) and let the functions

tφp¨, tquTt“1 be continuous and increasing in all dimensions. Suppose that there is a finite set

X of R`, a strictly increasing function ū : X Ñ R`, and tM tuTt“1 such that the following

holds:

M t
ě φpūpxq, tq for all x P Ct X L and (17)

M t
ą φpūpxq, tq for all x P pCtzBCtq X L, (18)

where L “ X s̄ and ūpxq “ pūpx1q, ūpx2q, . . . , ūpxs̄qq. Then there is a Bernoulli function

u : R` Ñ R` that extends ū such that

M t
ě φpupxq, tq for all x P Ct and (19)

if x P Ct and M t “ φpupxq, tq, then x P BCt X L and M t “ φpūpxq, tq. (20)

Remark: The property (20) needs some explanation. Conditions (17) and (18) allow for

the possibility that M t “ φpūpx1q, tq for some x1 P BCt X L; we denote the set of points in

BCt X L with this property by X 1. Clearly any extension u will preserve this property, i.e.,

M t “ φpupx1q, tq for all x1 P X 1. Property (20) says that we can choose u such that for all

x P CtzX 1, we have M t ą φpupxq, tq.

Proof: We shall prove this result by induction on the dimension of the space containing the

constraint sets. It is trivial to check that the claim is true if s̄ “ 1. In this case, L consists
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of a finite set of points on R` and each Ct is a closed interval with 0 as its minimum. Now

let us suppose that the claim holds for s̄ “ m and we shall prove it for s̄ “ m ` 1. If, for

each t, there is a strictly increasing and continuous utility function ut : R` Ñ R` extending

ū such that (19) and (20) hold, then the the same conditions will hold for the increasing

and continuous function u “ mint u
t. So we can focus our attention on constructing ut for a

single constraint set Ct.

Suppose X “ t0, r1, r2, r3, . . . , rIu, with r0 “ 0 ă ri ă ri`1, for i “ 1, 2, . . . , I ´ 1. Let

r̄ “ max tr P R` : pr, 0, 0, . . . , 0q P Ctu and suppose that pri, 0, 0, . . . , 0q P Ct if and only if

i ď N (for some N ď I). Consider the collection of sets of the form Di “ ty P Rm
` : pri,yq P

Ctu (for i “ 1, 2, . . . , N); this is a finite collection of compact and downward closed sets in

Rm
` . By the induction hypothesis applied to tDiuNi“1, with tφpūpriq, ¨, tquNi“1 as the collection

of functions, there is a strictly increasing function u˚ : R` Ñ R` extending ū such that

M t
ě φpūpriq,u˚pyq, tq for all pri,yq P Ct and (21)

if pri,yq P Ct and M t “ φpūpriq,u˚pyq, tq, then pri,yq P BCt X L and M t “ φpūpri,yq, tq.

(22)

For each r P r0, r̄s, define

Uprq “ tu ď u˚prq : maxtφpu,u˚pyq, tq : pr,yq P Ct
u ďM t

u.

This set is nonempty; indeed ūprkq “ u˚prkq P Uprq, where rk is the largest element in

X that is weakly smaller than r. This is because, if pr,yq P Ct then so is prk,yq, and (21)

guarantees that φpūprkq,u˚pyq, tq ďM t. The downward closedness of Ct and the fact that u˚

is increasing also guarantees that Uprq Ď Upr1q whenever r ă r1. Now define ũprq “ supUprq;

the function ũ has a number of significant properties. (i) For r P X , ũprq “ u˚prq “ ūprq (by

the induction hypothesis). (ii) ũ is a nondecreasing function since U is nondecreasing. (iii)

ũprq ą ūprkq if r ą rk, where rk is largest element in X smaller than r. Indeed, because Ct is

compact and φ continuous, φpũprq,u˚pyq, tq ďM t for all pr,yq P Ct. By way of contradiction,

suppose ũprq “ ūprkq and hence ũprq ă u˚prq. It follows from the definition of ũprq that, for

any sequence un, with ũprq ă un ă u˚prq and limnÑ8 un “ ũprq, there is pr,ynq P C
t such

that φpun,u
˚pynq, tq ą M t. Since Ct is compact, we may assume with no loss of generality

that yn Ñ ŷ and pr, ŷq P Ct, from which we obtain φpũprq,u˚pŷq, tq “ M t. Since Ct is
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downward closed, prk, ŷq P Ct and, since ūprkq “ u˚prkq, we have φpu˚prk, ŷq, tq “M t. This

can only occur if prk, ŷq P BCt X L (because of (22)), but it is clear that prk, ŷq R BCt since

prk, ŷq ă pr, ŷq. (iv) If rn ă ri for all n and rn Ñ ri P X , then ũprnq Ñ u˚priq. Suppose to

the contrary, that the limit is û ă u˚priq “ ūpriq. Since u˚ is continuous, we can assume,

without loss of generality, that ũprnq ă u˚prnq. By the compactness of Ct, the continuity of

φ, and the definition of ũ, there is prn,ynq P C
t such that φpũprnq,u

˚pynq, tq “ M t. This

leads to φpû,u˚py1q, tq “M t, where y1 is an accumulation point of yn and pri,y1q P Ct. But

since φ is strictly increasing, we obtain φpu˚priq,u˚py1q, tq ąM t, which contradicts (21).

Given the properties of ũ, we can find a continuous and strictly increasing function ut

such that ut extends ū, i.e., utprq “ ūprq for r P X , utprq ă u˚prq for all r P R`zX and

utprq ă ũprq ď u˚prq for all r P r0, r̄szX . (In fact we can choose ut to be smooth everywhere

except possibly on X .) We claim that (19) and (20) are satisfied for Ct. To see this, note

that for r P X and pr,yq P Ct, the induction hypothesis guarantees that (21) and (22) hold

and they will continue to hold if u˚ is replaced by ut. In the case where r R X and pr,yq P Ct,

since utprq ă ũprq and φ is increasing, we obtain M t ą φputpr,yq, tq. QED

Proof of Theorem 1: This follows immediately from Lemma 1 if we set Ct “ Bt, and

M t “ φpūpxtq, tq. If ū obeys conditions (6) and (7) then it obeys conditions (17) and (18).

The rationalizability of O by tφp¨, tqutPT then follows from (19). QED

Proof of Proposition 1 (sufficiency). Suppose there is ū : X Ñ R` satisfying (i) to

(iii) and let ū` be its linear extension. Then (i) guarantees that ū` is strictly increasing

on R` and (ii) guarantees that ū` is concave. We claim that with ū` as the Bernoulli

function, xt has higher expected utility than any bundle in Btpetq. By definition, ū` is linear

between adjacent values of X ; it follows that the map from pa, bq to its expected utility

π1ū`paq ` π2ū`pbq is also linear for all pa, bq P rr, r1s ˆ rm,m1s, where r and r1 are adjacent

points in X (and similarly m and m1). A linear map is maximized at an extreme point; thus

if prr, r1sˆ rm,m1sqXBBppt, etpt ¨xtq is nonempty then there is a bundle pa˚, b˚q maximizing

expected utility in this set with either a˚ P tr, r1u or b˚ P tm,m1u. More generally, there must

be a bundle pa˚˚, b˚˚q that maximizes expected utility in Bppt, etpt ¨ xtq and is contained in

BBppt, etpt ¨ xtq XN . It follows that (16) is sufficient to guarantee the optimality of xt in
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Btpetq. QED
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